If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2-60w+500=0
a = 1; b = -60; c = +500;
Δ = b2-4ac
Δ = -602-4·1·500
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-40}{2*1}=\frac{20}{2} =10 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+40}{2*1}=\frac{100}{2} =50 $
| 42=7/3v= | | 80/n=8 | | n-924=723 | | (x+6)(x+4)=120 | | 3x+10+2x+40=90 | | 1.5x+30=90 | | 1/9x^2-5x+27=0 | | 81^(1-x)=243x= | | 81^(1-x)=243 | | 7^2=8-10x | | w*2w-1=10 | | (π^(√2)*(√2)^π)*x=15 | | 5/31z=4 | | 0.3(n-5)=04-0.2n | | 7x+4+5x=-4+13x+9 | | 10n+0.3=01n+0.3 | | X4-12x2+32=0 | | 49n^2+6=55 | | 64k^2+5=41 | | 16p-3=22 | | 25n^2-6=94 | | -10x+x=-15 | | p^2+9=45 | | -10x+x=15 | | −3=2x−5 | | x-8=1/5 | | 3x=+6 | | 3/5x=14.55 | | 5(2x)-6=14 | | 4x+8=9x+4 | | 9y^2-36(y+2)^2=0 | | 18=x^2-13+2x-4 |